Skip to content

Open In Colab

Getting Started with Instance Segmentation using IceVision

Introduction

This tutorial walk you through the different steps of training the fridge dataset. the IceVision Framework is an agnostic framework. As an illustration, we will train our model using both the fastai library, and pytorch-lightning libraries.

For more information about how the fridge dataset as well as its corresponding parser check out the pennfudan folder in icedata.

Installing IceVision and IceData

If on Colab run the following cell, else check the installation instructions

# IceVision - IceData - MMDetection - YOLO v5 Installation
!wget https://raw.githubusercontent.com/airctic/icevision/master/install_colab.sh
!chmod +x install_colab.sh && ./install_colab.sh

Imports

from icevision.all import *

Model

To create a model, we need to:

  • Choose one of the models supported by IceVision
  • Choose one of the backbones corresponding to a chosen model
  • Determine the number of the object classes: This will be done after parsing a dataset. Check out the Parsing Section

Choose a model and backbone

TorchVision

model_type = models.torchvision.mask_rcnn
backbone = model_type.backbones.resnet34_fpn()

Datasets : Pennfudan

Fridge Objects dataset is tiny dataset that contains 134 images of 4 classes: - can, - carton, - milk bottle, - water bottle.

IceVision provides very handy methods such as loading a dataset, parsing annotations, and more.

# Loading Data
data_dir = icedata.pennfudan.load_data()
train_ds, valid_ds = icedata.pennfudan.dataset(data_dir)

Displaying the same image with different transforms

Note:

Transforms are applied lazily, meaning they are only applied when we grab (get) an item. This means that, if you have augmentation (random) transforms, each time you get the same item from the dataset you will get a slightly different version of it.

samples = [train_ds[0] for _ in range(3)]
show_samples(samples, ncols=3)

png

DataLoader

# DataLoaders
train_dl = model_type.train_dl(train_ds, batch_size=8, num_workers=4, shuffle=True)
valid_dl = model_type.valid_dl(valid_ds, batch_size=8, num_workers=4, shuffle=False)
# show batch
model_type.show_batch(first(valid_dl), ncols=4)

png

Model

Now that we determined the number of classes (num_classes), we can create our model object.

# TODO: Better flow for train_ds
model = model_type.model(backbone=backbone, num_classes=icedata.pennfudan.NUM_CLASSES) 

Metrics

metrics = [COCOMetric(metric_type=COCOMetricType.mask)]

Training

IceVision is an agnostic framework meaning it can be plugged to other DL framework such as fastai2, and pytorch-lightning.

You could also plug to oth DL framework using your own custom code.

Training using fastai

learn = model_type.fastai.learner(dls=[train_dl, valid_dl], model=model, metrics=metrics)
learn.lr_find()
SuggestedLRs(lr_min=0.00010000000474974513, lr_steep=1.737800812406931e-05)

png

learn.fine_tune(20, 1e-4, freeze_epochs=1)
epoch train_loss valid_loss COCOMetric time
0 2.361193 1.672817 0.000040 00:16
epoch train_loss valid_loss COCOMetric time
0 1.536968 1.494403 0.000147 00:19
1 1.516644 1.430333 0.000538 00:23
2 1.496924 1.343002 0.001926 00:22
3 1.435968 1.183041 0.002488 00:21
4 1.343802 0.962206 0.000928 00:20
5 1.199133 0.734787 0.004951 00:20
6 1.071547 0.682442 0.005912 00:20
7 0.973078 0.692099 0.006344 00:20
8 0.892403 0.649406 0.006396 00:21
9 0.837712 0.690478 0.007804 00:22
10 0.790692 0.647615 0.007775 00:23
11 0.758785 0.626387 0.002885 00:20
12 0.727605 0.609429 0.010509 00:20
13 0.706678 0.611301 0.012746 00:20
14 0.684067 0.616399 0.008784 00:20
15 0.668815 0.621261 0.011861 00:19
16 0.652843 0.615020 0.008686 00:19
17 0.649229 0.612351 0.008146 00:20
18 0.641258 0.609879 0.007551 00:22
19 0.640558 0.608780 0.007924 00:19

Training using Lightning

class LightModel(model_type.lightning.ModelAdapter):
    def configure_optimizers(self):
        return SGD(self.parameters(), lr=1e-4)

light_model = LightModel(model, metrics=metrics)
trainer = pl.Trainer(max_epochs=20, gpus=1)
trainer.fit(light_model, train_dl, valid_dl)

Show Results

model_type.show_results(model, valid_ds, detection_threshold=.5)

png

Inference

Predicting a batch of images

Instead of predicting a whole list of images at one, we can process small batches at the time: This option is more memory efficient.

NOTE: For a more detailed look at inference check out the inference tutorial

infer_dl = model_type.infer_dl(valid_ds, batch_size=4, shuffle=False)
preds = model_type.predict_from_dl(model, infer_dl, keep_images=True)
show_preds(preds=preds[:4], ncols=3)

png

Happy Learning!

If you need any assistance, feel free to join our forum.