Training and End-to-End dataset (Fridge Objects)
In this example, we are training the Fridge Objects dataset using either Fastai or Pytorch-Lightning training loop
# pip install icevision[all] icedata
from icevision.all import *
url = "https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip"
dest_dir = "fridge"
# Loading Data
data_dir = icedata.load_data(url, dest_dir)
# Parser
class_map = ClassMap(["milk_bottle", "carton", "can", "water_bottle"])
parser = parsers.voc(annotations_dir=data_dir / "odFridgeObjects/annotations/",
images_dir=data_dir / "odFridgeObjects/images",
class_map=class_map)
# Records
train_records, valid_records = parser.parse()
# Transforms
train_tfms = tfms.A.Adapter([*tfms.A.aug_tfms(size=384, presize=512), tfms.A.Normalize()])
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384), tfms.A.Normalize()])
# Datasets
train_ds = Dataset(train_records, train_tfms)
valid_ds = Dataset(valid_records, valid_tfms)
# DataLoaders
train_dl = efficientdet.train_dl(train_ds, batch_size=16, num_workers=4, shuffle=True)
valid_dl = efficientdet.valid_dl(valid_ds, batch_size=16, num_workers=4, shuffle=False)
# Model and Metrics
model = efficientdet.model(model_name="tf_efficientdet_lite0", num_classes=len(class_map), img_size=size)
metrics = [COCOMetric(metric_type=COCOMetricType.bbox)]
# Training using Fastai
learn = efficientdet.fastai.learner(dls=[train_dl, valid_dl], model=model, metrics=metrics)
learn.fine_tune(50, 1e-2, freeze_epochs=20)
# Inference
# DataLoader
infer_dl = efficientdet.infer_dl(valid_ds, batch_size=8)
# Predict
samples, preds = efficientdet.predict_dl(model, infer_dl)
# Show samples
imgs = [sample["img"] for sample in samples]
show_preds(
imgs=imgs[:6],
preds=preds[:6],
class_map=class_map,
denormalize_fn=denormalize_imagenet,
ncols=3,
)
# pip install icevision[all] icedata
from icevision.all import *
import icedata
url = "https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip"
dest_dir = "fridge"
# Loading Data
data_dir = icedata.load_data(url, dest_dir)
# Parser
class_map = ClassMap(["milk_bottle", "carton", "can", "water_bottle"])
parser = parsers.voc(annotations_dir=data_dir / "odFridgeObjects/images/",
images_dir=data_dir / "odFridgeObjects/annotations",
class_map=class_map)
# Records
train_records, valid_records = parser.parse()
train_tfms = tfms.A.Adapter([*tfms.A.aug_tfms(size=384, presize=512), tfms.A.Normalize()])
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384), tfms.A.Normalize()])
# Datasets
train_ds = Dataset(train_records, train_tfms)
valid_ds = Dataset(valid_records, valid_tfms)
# DataLoaders
train_dl = efficientdet.train_dl(train_ds, batch_size=16, num_workers=4, shuffle=True)
valid_dl = efficientdet.valid_dl(valid_ds, batch_size=16, num_workers=4, shuffle=False)
# Model and Metrics
model = efficientdet.model(model_name="tf_efficientdet_lite0", num_classes=len(class_map), img_size=size)
metrics = [COCOMetric(metric_type=COCOMetricType.bbox)]
# Training using Pytorch Lightning
class LightModel(efficientdet.lightning.ModelAdapter):
def configure_optimizers(self):
return SGD(self.parameters(), lr=1e-2)
light_model = LightModel(model, metrics=metrics)
trainer = pl.Trainer(max_epochs=70, gpus=1)
trainer.fit(light_model, train_dl, valid_dl)
# Inference
# DataLoader
infer_dl = efficientdet.infer_dl(valid_ds, batch_size=8)
# Predict
samples, preds = efficientdet.predict_dl(model, infer_dl)
# Show samples
imgs = [sample["img"] for sample in samples]
show_preds(
imgs=imgs[:6],
preds=preds[:6],
class_map=class_map,
denormalize_fn=denormalize_imagenet,
ncols=3,
)